
A Generalized Duality and Applications 

P H A N  T H I E N  T H A C H *  
Institute of Human and Social Sciences, Tokyo Institute of Technology 

(Received:  17 December  1990; accepted: 20 October  1992) 

Abstract. The  aim of this paper  is to present  a nonconvex duality with a zero gap and its connection 
with convex duality. Since a convex program can be regarded as a particular case of convex 
maximizat ion over  a convex set, a nonconvex duality can be regarded as a generalization of convex 
duality.  The  generalized duality can be obtained on the basis of  convex duality and minimax theorems.  
The  duality with a zero gap can be extended to a more  general  nonconvex problems such as a 
quasiconvex maximizat ion over a general  nonconvex set or a general  minimizat ion over the  comple- 
men t  of  a convex set. Several applications are given. 
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1. Introduction 

Over the last decades duality theory has been fully developed for general convex 
minimization problems. The duality is constructed on the basis of the Karush- 
Kuhn-Tucker condition and Lagrangian multipliers. For a given convex program 
we can define a variety of dual problems depending on the way of perturbation. 
One of the most often used perturbations is the Lagrangian relaxation. For more 
general programs this approach can be generalized by using a concept of price 
functions (see, e.g. [24, 2]). In principle we could obtain a dual problem of a 
nonconvex optimization problem by using the class of all nondecreasing price 
functions. However, the dual is no longer defined in a finite dimensional space. 
Many attempts have been made to provide a suitable class of price functions 
whose parameters are in a finite dimensional space, but the duality gap cannot be 
then avoided in general nonconvex problems. Although there are many significant 
results on an estimation of the size of the duality gap (see, e.g. [1, 6]), this is an 
obstacle for algorithmic implementations. 

In Global Optimization, where local optima are not global, the algorithmic 
studies have typical been developed based on the combinatorial techniques such 
as enumeration and branch and bound methods. We mention the pioneering 
paper by Tuy [26] and the excellent survey by Horst and Tuy [7] in this field. 
Convex duality can be incorporated into the solution methods for nonconvex 
problems for obtaining the valid cuts or the lower bounds. However, the 
conceptual aspect of dualization in nonconvex problems seems to have a big 
difference with respect to convex duality. The first nonconvex-type duality was 
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introduced by Toland [25]. This dualization was used earlier by Pshenichnyyi [14] 
in differential game and optimal control,  and was developed later to further 
applications of d.c. minimization (abbreviation of "minimization of the difference 
of two convex functions on a convex set")  by Hiriart-Urruty [5]. More  recently, 
another  nonconvex-type duality has been introduced [18]. There  are several 
points of differences between Toland's duality and our duality. In our duality one 
can obtain a dual problem of a reverse convex program (abbreviation of "convex 
minimization over the complement of a convex set")  which is more general than 
d.c. minimization. 

In this paper we shall see a connection between nonconvex duality and convex 
duality. If we consider a concave program (abbreviation of "convex maximization 
over a convex set")  as a generalization of convex programs then we can obtain its 
dual problem by using convex duality and the minimax theorem. Here  we would 
mention that the term "concave program" is used in many literatures (see [7] and 
its references) and it comes quite reasonably because convex maximization is 
equivalent to concave minimization. The transformations for a dual problem of a 
concave program presents a natural route to a definition of the so-called quasicon- 
jugate. In this paper the duality will be extended to more general problems such 
as a quasiconvex maximization over a compact set or a general minimization over 
the complement  of a convex set. Several applications are given. 

The paper is organized as follows. In Section 2 we give a connection between 
convex duality and a nonconvex duality. We present a way to define a dual 
problem of a concave program by using convex duality and the minimax theorem. 
In Section 3 we present a duality for generalized concave and reverse convex 
programs, where the objectives are quasiconvex. Several applications are given in 
Section 4. In Section 5 we present extensions and finally we draw some conclu- 
sions in Section 6. 

2. A Dual Problem of a Concave Program 

Let  us consider a convex maximization over a convex set 

sup{ f(x)  : x ~ X} (1) 

where f is a convex function and X a compact convex set containing 0 E R n. Since 
convex maximization is equivalent to concave minimization, problem (1) is often 
called a concave program (see [7]). Since a linear function is, of course, a convex 
function, the convex program 

sup{(c,  x)  : x e X } ,  (2) 

with c E R n is a particular case of program (1). We have 

sup{(c,  x)  : x e X }  

= inf{t : t i> (c,  x)Vx E X)  
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= 1 / sup( t :  1 / t ~  ( c , x ) V x E X }  

= 1/sup( t  : 1/> (tc, x )Vx  E X }  

= 1/sup{t : tc ~ X ~ , (3) 

where X ~ denotes the polar of X: 

X ~  iv : ( v , x ) ~ < l V x ~ X ) .  

Since X is compact, 0 E int X ~ We call now the problem 

sup( h : Ac E X ~ (4) 

a dual problem of problem (2). The vector c in the primal problem (2) is regarded 
as a linear function defined on the variable space, whereas it is an element in the 
variable space of the dual problem (4). Therefore it is reasonable to use here the 
term "dual" .  If the feasible domain X is given by a system of convex (or, simpler, 
linear) inequations, then it has been known that by using representations of the 
polar set X ~ we can obtain more sophisticated dual problems. We consider now 
other equivalent formulations of the dual problem (4). Since X ~ is a closed 
convex set containing 0 in its interior, problem (4) is equivalent to 

inf{A > 0 : A c ~ i n t  X~  (5) 

It is well known that there are two ways of representation of a given closed 
convex set V. The convex hull of points in V is a direct representation, and the 
intersection of closed halfspaces containing V is a dual representation. The 
equivalence between (4) and (5) is based on the direct representation of the 
convex set V=  X ~ Since 0 E int V, one has Av E int V for all v E V and A E [0, 1). 
The proof of this property is based on the direct representation of the convex set 
V ([15], Theorem 6.1). This property implies that 

sup{t : tc E V} ~ inf{t > 0 : tc ~ i n t  V}.  

The inverse inequality is simply obtained from the fact that for every t i> 0, one 
has either tc ~ V or tc ~/int V. 

Now we define 

~oc(v)=inf{(c,x) : ( v , x )~>l )  V v E R " .  (6) 

It is easy to check that q~c(v) is quasiconcave w.r.t, v and 

[l_/h i f v = h c ,  A>~0 
~ ( v )  = otherwise.  

Therefore,  

sup{ (c ,x )  : x E X }  

= 1/inf{h > 0 : Ac JE'int X ~ 

= sup{1/A : hc ~ i n t X  ~ 



314 P H A N  T H I E N  T H A C H  

= sup {1/h : hc = v, v ~ ' in t  X ~ 
(~,v) 

= sup ~oc(v ) .  
v .~'int X 0 

The problem 

sup ~&(v) (7) 
v.-~int X 0 

is a maximization of a quasiconcave function (or, equivalently, a minimization of 
a quasiconvex function) over the complement of a convex set and it is called a 
dual problem of (2). The dual problems (4), (5) and (7) are equivalent and the 
simplest one (4) is more often used in convex duality. However ,  formulation (7) 
will be used in the sequel to obtain a dual problem of a general concave program. 

We reconsider a concave program (1) where the convex function f( . )  is given by 
the supremum of a family of affine functions: 

f(x) = sup{(v,  x)  - g(v) :  v E G)  (8) 

where G is a closed convex set and g(.) is a closed convex function w. r . t .v .  If f is 
a proper  closed convex function, then f =  f** and it can be represented as in (8) 
where g(v) = f*(v) and G = domg* (see, e.g. [15]). We have 

sup{f(x)  : x E X)  

= sup sup {(v,  x) - g(v)) 
x • X  v E G  

= sup sup {(v,  x)  - g(v)} 
v ~ G  x E X  

= sup ( -g(v )  + sup (v,  x )}  
v E G  x ~ X  

= sup 
v E G  

= sup 
o E G  

{ - g ( v ) +  sup q~v(Z)) (*) 
z.~int X ~ 

( -g(v )  + sup i n f { ( v , x ) :  ( z , x ) / > 1 } )  
z ~ i n t  X 0 

sup ( - g ( v ) + i n f ( ( y , x )  : ( z , x )  ~1}}  = sup 
v E G  z.~int  X 0 

= sup sup inf {(v, x) - g(v)) 
z.~int  X o v ~ G  x :  ( z , x ) ~ l  

= sup inf sup { ( v , x )  - g(v)} (**) 
z.~.int X o x : ( z , x ) ~ l  o E G  

= sup inf{f (x) ' :  ( z , x )  ~ 1 } .  
z~ ' in t  X 0 

In the above transformations we use a convex duality on the line (*) and the 
minimax theorem on the line (**). If we denote 

q~(z) = inf {f(x)  : <z, x ) />  1},  (9) 
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then ~p(.) is quasiconcave w.r.t, z and 

sup{f(x) : x ~ X} 

= sup{q~(z): z ~E'int X~ (10) 

Problem (10) is called a dual problem of a general concave program (1) and it is a 
maximization of a quasiconcave function (or, equivalently, a minimization of a 
quasiconvex function) over the complement of a convex set. The objective 
function q~(.) defined via (9) is related to a quasiconjugation [18]. 

3. A Generalized Duality 

In this section we present a generalized duality for a quasiconvex maximization 
over a compact convex set (briefly called a generalized concave program), and a 
quasiconvex minimization over the complement of a convex set (briefly called a 
generalized reverse convex program). There are several reasons for us to consider 
quasiconvex functions which are more general than convex functions. The first 
reason is that the class of quasiconvex minimization on the complement of a 
convex set includes the quasiconvex minimization over a convex set, which is a 
multi-extremal optimization problem, but reasonably is the first generalization of 
convex minimization. The second reason is that the level sets play a more crucial 
role than the epigraphs in nonconvex problems and the class of convex functions 
is not large enough and not stable w.r.t, the quasiconjugation, which is an 
important instrument in a nonconvex duality. 

Let  us recall here a definition of the quasiconjugate [18]. 

DEFINITION 3.1. Let f :  R"---~RtO {_+~). The function f H :  R"---~RU {___oo} 
defined by 

~ - i n f { f ( x ) : ( v , x ) ~ l }  i f v # O  
fU(v) = [ - sup{ f (x )  : x E R } if v = 0 

is called the quasiconjugate o f f .  The function (fn)H is called the biquasiconju- 
gate of f and briefly denoted by f/-m. 

An important class is of functions f such that f = fHH. Denote by q) this class. 
Since f~/H is a quasiconvex function satisfying 

fHn(0)  = inf{ flirt(x) : x E Rn\{0}}, 

if f ~ @ then f is a quasiconvex function satisfying 

f(0) = inf{ f(x) : x ~ R"\{0}}. (11) 

Denote  by ~ the class of quasiconvex functions f : R"---~ R tO {_+~} satisfying 
(11). ~ obviously contains ~.  However, the difference between ~ and @ is not 



316 P H A N  T H I E N  T H A C H  

very big. Function f E ~ will belong to ~ i f f  is either usc (see [18], Theorem 4.1) 
or lsc (see Theorem 3.1 below). 

T H E O R E M  3.1. f i f e  ~ is Isc, then f ~ ~, i.e. ft~u = f. 
Proof. Since f ~ ~ ,  one has 

f(o) = f u " ( 0 )  

f(x) >~fHU(X) VX ~ R" 

([18], Lemma 4.1). Suppose that fUU(x)<f(x)  at some x # 0. There is a vector v 
such that 

1 = ( v , x ) >  sup{(v,  y ) :  f(y)<~fHH(x)}. 

Such a vector v exists, because f is lsc, f(x) >fUU(x)  and f (0)  <~fHH(x). So, 

in f{ f (y)  : (v,  y )  I> 1} >fHU(x) 

~ f H ( v )  = - i n f { f ( y )  : (v,  y ) />  1) < --flirt(X). (12) 

On the other hand one has 

fHH(x) = --inf{ fH(u): ( U, X) >! 1) >I --fU(v) , 

because (v,  x)  = 1. This together with (12) implies fHH(x) >fHH(x). This is a 
contradiction. Thus, fHH = f. [] 

A problem of maximizing a function f E �9 over a Compact convex set X 
containing O: 

max{ f(x) : x e X} (13) 

is called a generalized concave program, and a problem of minimizing a function 
f E ~ over the complement of an open convex set Y containing 0: 

min{ f(x) : x ~ Y} (14) 

is called a generalized reverse convex program. We would mention here that a 
concave program can be simply transformed into a reverse convex program by 
using an additional variable (see, e.g. [7]). However ,  a generalized concave 
program cannot be simply transformed into a generalized reverse convex pro- 
gram. A dual problem of (13), by definition, is 

min{fU(v) : v JE'int X ~ (15) 

and a dual problem of (14), by definition, is 

max{ fn(v)  : v E y 0 } .  (16) 

Since ( f H) un = ( f HH ) n = f H, i.e., f U E q~ if f E q~, the dual (15) is a generalized 
reverse convex program, and the dual (16) is a generalized concave program. If 
we take now a dual of problem (15), then we have 
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max( f nn (x )  : x E (int X~ ~ 

<=>max{ f(x) : x E X } .  

Therefore the dual of the dual is exactly the primal. 

T H E O R E M  3.2. I f  f E �9 and X is a compact convex set containing 0 then 

sup{f(x)  : x E X} = - i n f { f n ( v )  : v ~ i n t  X ~  

Proof. We have 

sup{ f(x) : x E X} 

= sup{ fnn(x)  : x E X}  

= sup {-ionf { fH(v)  : (V, X) /> 1} : X E X} 
x 

= - inf inf{fH(v) : (V, X) >i 1} 
x ~ X  v 

= - i n f  inf { f n ( v ) :  ( v , x )  ~>1} 
x E X  

= - inf { f/-/(v) : v ~ i n t  X ~ 

(because v ~E'int X ~ r 3x  E X : ( v, x)  I> 1).  [] 

We now discuss the solvability of the generalized concave programs, the general- 
ized reverse convex programs, and the relationships between optimal solutions of 
the primal and dual problems. By the symmetricity we can consider only the 
primal-dual pair (13), (15). In problem (13) if the function f is usc, then there is 
x* E X such that f (x*) = max{ f(x) : x ~ X},  and in problem (15) if the function 
f n  is lsc and satisfies the following coercivity condition: 

fH(v)"->sup{fH(u) : u ~ R ~} as [[v[[---~, (17) 

then there is v ~ i n t  X ~ such that 

fH(v)  = min{ fH(u) : u ~ i n t  X ~  

Furthermore,  f i s  usc if and only i f f  H is lsc and satisfying (17) (see [18]). We now 
have the following duality theorem. 

T H E O R E M  3.3. Assume that f E dp is usc. 
(i) The primal problem (13) and its dual problem (15) are solvable. 

(ii) I f  v* solves the dual (15) then any vector in the convex set { x E  
X :  (v*,  x )  >t 1} solves the primal (13). 

(iii) I f  x* solves the primal (13) then every minimizer o f f  n on the halfspace 
(v : (x*,  v)  I> 1} solves the dual (15). 

Proof. The proof  of assertions (i) and (ii) can be found in [18]. It remains to 
prove assertion (iii). Suppose that x* solves (13) and v* is a minimizer o f f  n on 
the halfspace {v : (x*,  v)  i> 1} (such a vector exists by [18], Lemma 3.1). Then, 
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f n ( v * )  = in f{ fH(v)  : (X*, V) >! 1} 

= --fHH(x* ) 

= - f ( x * )  

= -sup(13)  

= - in f (15) .  

Further v* is feasible to (15), because x ~ X  and (x*,  v*) I>1. Therefore v* 
solves (15). [] 

E X A M P L E  3.1. f (x)  = max{(c, x ) ,  0}. Then f ~  tb and 

fib(v) = if v = Ac for some A > 0 

otherwise. 

Primal: 

Dual: 

max{(c,  x)  : x E X} r max{ f(x) : x E X} .  

min{ fH(v)  : V ~ i n t  X ~ } r min{ A > 0 : Ac ~"int X~ 

The dual is exactly problem (5) which could be obtained by convex duality. 

4.  A p p l i c a t i o n s  

APPLICATION 4.1. We consider the following problems. 
Problem (A). Let X be a bounded polyhedral convex set given by 

X = {x @ R" : ( a i ,  X) ~ 1Vi = 1 , . . . ,  k} ,  (18) 

where a i G R n i = 1 , . . . ,  k. Find the smallest ball centered at 0 containing X. 
Problem (B). Let V be a polyhedral convex set given by 

V=  c o n v { a l , . . .  , ak} , (19) 

where ai G R n i = 1 , . . . ,  k. Find the biggest ball centered at 0 contained in V. 
Problem (A) can be formulated as follows 

sup<llxl l  2 : (a l ,  x )  ~< 1 v i  = 1 . . . .  , k } .  (20)  

This is a linearly constrained quadratic concave program. The quasiconjugate of 
the function x ~  Ilxll 2 is v ~ - 1/11oll =, and the polar of X is V. So the dual of 
(20) is 

i n f { - 1  :y~E' intV} 
Ilyll 2 

<=>inf{llyll2 : y ~E'int V}.  
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This is problem (B). If x* is a solution of problem (A), then by Theorem 3.3, 

x*/l lx*l l  2 is a solution of problem (B). 

APPLICATION 4.2. We consider a bilinear programming 

sup sup zTAx (21) 
g(x)~<l h(z)<l 

where A is a nonsingular n x n matrix, g(x) and h(z) are the optimal values of the 
following convex programs 

g(x) = sup{urMx : u E U} 

h(z) = sup{zrNv : V ~ V} 

with U, V being compact convex sets containing 0 in R n, and M, N matrices of the 
sizes n x n. Set 

f(x) = sup{ zTAx : h(z) <~ 1} 

x = (x  : g(x) 1 ) .  

Problem (21) is then to maximize f over X. The polar V of X, and the 
quasiconjugate fH can be defined as follows 

V= ( M r u : u ~  U} 

--fH(v) = inf sup {zrAx : h(z) <- 1, (x, v) />  1} 
x z 

= sup inf { f lAx  : h(z) <- 1, (x,v)  >I 1} . 
z 

For any z such that A r z ~ { A v :  A~>O} we have 

inf{zrAx: (x, v) ~>1} = - ~ .  

For z = h ( A r ) - l v ( h  ~ 0 )  we have 

inf{zrAx : (x, v) >i 1} = h .  

Therefore,  

--fH(v) = sup{h : h(A(AT)-lv) <- 1} 

= sup{A : Xh((Ar)-lv) <- 1} 
1 

h((Ar)-~v) 

So, the dual is 

1 
i n f{ -  h((Ar)_iv ) : v~"int  Y} 

<=> inf{ h((A r)-lv) : v ~"int Y} 

r inf{ h((A T)- 1MTu) : U J~int U} 

r inf sup urMA-INv.  
u ~ i n t  U v ~ V  
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We obtain a duality relationship between a bilinear programming and a minimax 
problem with a reverse convex constraint. 

A P P L I C A T I O N  4.3. Consider the following program 

min{f0(x ) : f l ( x )  x . . .  x f k (X)  <~ 1, X E A }  , (22) 

where A is a compact convex set in R n, ]Co is a convex function, f~, i = 1 , . . . ,  k are 
nonnegative-valued convex functions on A and k an integer smaller than n. Let  w 
be a minimizer of the convex function f0 on the convex set A. If f l ( w )  x . . .  x 

f k ( W )  ~ 1, then w solves (22). This case is not of our interests. We are interested 
in the following case 

f l ( w )  x . . .  x f k ( W )  > 1. (23) 

Program (22) is equivalent to the following reverse convex program 

m i n {  fo(X ) : t 1 x . . . x t k <<. 1, f~(x)  <- t i i =  1 , . . . ,  k ,  x E A } . (24) 

In program (24) the reverse convex constraint is 

t 1 x . . .  x t k < ~ l .  

By translating 0 ~  R n x R g to (0, f ~ ( w )  . . . .  , f k ( W ) ) E  R n x R k, program (24) can 

be transformed into 
k 

rain{ f0(x) : 1-[ (ti + f/(w)) ~< 1, f~(x) - f/(w) ~< t i i = 1 , . . . ,  k ,  x ~ A } .  

(25) 
Set 

D = { ( x , t )  e R " •  ~ : f / ( x ) - f i ( w ) ~ < t g  = 1  . . . .  , k x ~ A }  

k 

Y = {(x, t) : 1--i (ti + f i ( w ) )  ~ 1, t i + f i ( w )  >t 0 i = 1 , . . .  , k} 
i = 1  

t)=[o(X) + 8((x, 01D), 

where 8(. ID) is the indicator of D. Program (25) can be then rewritten as follows 

inf{ g ( x ,  t ) :  (X, t ) ~ i n t  Y}.  

Since function g ( x ,  t) is convex, this is a reverse convex program. It can be 
checked that 

Y ~  E R n x R k : - k x ( ~ I ( - A i ) )  i lk Aif~(W) ~ 1 

A = ( A 1 , . . . ,  Ak)~<0} C_0 X g k_ (26) 

and the quasiconjugate of g is defined on 0 x R k as follows 
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gn(A) = - inf{  g(x, t) : (t,  A) i> 1} 

= - inf{f0(x ) + 6((x, OlD) : (t,  A) I> 1} 

= - inf{f0(x ) : (t,  A) ~> 1, (x, t) E D} 

k 

= - inf{f0(x) :  sup ~ l~i(fi(x ) - f i ( w ) ) ~  1} 
x ~ A  i = 1  

Therefore the dual of (25) is 

sup{gn(A) : A E y0} .  

This is a generalized concave program in R k. When k = 2 it can be solved by a 
practically efficient algorithm [19]. 

5. Extensions 

The generalized duality can be applied to more general nonconvex optimization 
problems. 

Using the duality presented in the previous section we can obtain a dual 
problem of a quasiconvex maximization problem over a compact (nonconvex) set 

sup{ f(x) : x ~ X } ,  (27) 

where f E @ and X is a compact set such that 0 E conv X. Since f is quasiconvex, 
we have 

sup{ f(x) : x ~ X} = sup{ f(x) : x E cony X } .  

Since X ~ = (cony X) ~ the dual of problem sup{f(x) : x E conv X} is 

inf{ f~ (v )  : v ~ i n t  X~  (28) 

If v* solves (28), then the set {x E conv X :  {v*, x) >i 1} is nonempty and every 
vector in this set maximizes f(.)  on cony X. This implies that every vector x ~ X 
such that (v*, x)  I> 1 maximizes f(.)  on X. The problem (28) is called a dual of 
problem (27). 

We consider now a general minimization over the complement of a convex set 

inf(f(x)  : x ~ i n t  X } ,  (29) 

where X is a dosed convex set satisfying 0 E int X, and f is a function satisfying 
f(0)  = inf{ f(x) : x ~ Rn\{0}}. 

T H E O R E M  5.1. I f  either f is usc or f is lsc and satisfies f(x)--->sup{f(x) : x ~ R"} 
as llxll  , then 

inf{ f(x) : x ~" Y} = inf{ fnt4(x) : x ~ Y} (30) 

for  every open convex set Y. 
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Proof. Suppose that f is usc. Then, 

{x : frill(X) < a} = conv{x : f (x)  < a} rot 

(see [18]). Therefore, 

a ~< inf{ f (x)  : x ~ Y} 

<=>{x : f ( x ) <  a} C_ Y 

<=>conv{x : f (x)  < a}  C_ Y 

<=> {x : fm~(x) < ~} c_ Y 

<==> ~< { f " n ( x )  : x ~ Y } .  

So we have (30). If f is lsc andf(x)-- ->sup{f(x):x  ~ R'}  as Ilxll ~ ,  t h e n f h a s  a 
minimizer on every closed set, and 

{x : f"H(x)  <~ a} = conv{x : f ix)  <<- a} 

[18]. Therefore 

a < m i n ( f ( x ) : x ~ Y }  

{x : f (x)  <~ c~ } C_ Y 

r : f (x)  <~ oz} C_ Y 

<::> {x : fHH(x) <- a} C_ Y 

r ~ < min( f(x)  : x ~ Y} . 

Then we also have (30). [] 

With the assumption of Theorem 5.1, we have 

inf{ f (x)  : x ~/int X} = inf{ fHH(x) : X ~ i n t  X} . 

Since fnH~ = fH, the dual of the problem inf{ fHH(x) :X ~' in t  X} is 

sup{ fH(v)  : V E X~ (31) 

If v* solves (31), then every minimizer offHH(") on the halfspace {x:  (v*, x)  >I 
1} is also a minimizer of fHn(.)  on Rn\int X. Therefore, every minimizer of f( .)  
on {x:  (v*, x)  1> 1} is also a minimizer o f f ( . )  on Rn\int X. The problem (31) is 
also called a dual problem of problem (29). 

6. Discussions 

In this paper we have shown that if we consider a convex program as a particular 
case of a concave program, then the dual problems obtained by convex duality 
and a nonconvex duality are equivalent. Further, a dual problem of a concave 
program can be obtained on the basis of convex duality and the minimax 
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theorem. Therefore, in some senses the nonconvex duality can be regarded as a 
generalization of convex duality. 

For another class of nonconvex optimization 

inf {hx(x  ) - h 2 ( x ) )  (32)  
x ~ R  n 

where h I is an arbitrary function and h 2 is a finite convex function, Toland [25] 
introduced a dual problem 

inf {h~(y) - h~(y)}. (33) 
y~dom h~ 

By using an additional variable t we can transform problem (32) into a minimiza- 
tion on the complement of an open convex set in R n§ In [21] we show that the 
dual problem (33) can be obtained from our duality. 

The duality theory plays an important role in constructing efficient computa- 
tional methods. In many cases the dual problem is much simpler than the primal 
problem. For instance, the number of variables in the dual problem is much 
smaller than the number of variables in the primal problem. The approach using 
this duality has recently been used to solve certain classes of large-scale noncon- 
vex optimization (see [19, 20, 22]). 

Acknowledgement 

The author expresses his thanks to Prof. W. Oettli for helpful discussions on a 
general duality. The author thanks the referees for valuable comments and 
suggestions. 

References 

1. Aubin, J. P. and Ekeland, 1. (1976), Estimates of the duality gap in nonconvex optimization, 
Math. Oper. Res. 1, 225-245. 

2. Burkard, R. E., Hamacher, H. W. and Tind, J. (1982), On abstract duality in mathematical 
programming, Zeitschrift fur Oper. Res. 26, 197-209. 

3. Falk, J. E. and Hoffman, K. L. (1976), A successive underestimating method for concave 
minimization problems, Math. Oper. Res. 1, 251-259. 

4. Hillestad, R. J. and Jacobsen, S. E. (1980), Reverse convex programming, Appl. Math. Optim. 6, 
63 -78. 

5. Hiriart-Urruty, J. B. (1984), Generalized differentiability, duality and optimization for problems 
dealing with differences of convex functions, Lecture Notes in Economics and Mathematical 
Systems, ed. by J, Ponstain, 256, 37-70. 

6. Horst, R. (1980), A note on the dual gap in nonconvex optimization and a very simple procedure 
for bild evaluation type problems, European J. Oper. Res. 5, 205-210. 

7. Horst, R. and Tuy, H. (1990), Global Optimization, Springer-Verlag. 
8. Konno, H. and Kuno, T. (1992), Linear multiplicative programming, Math. Prog. 56, 51-64. 
9. Konno, H. and Yajima, Y. (1982), Minimizing and maximizing the product of linear fractional 

functions, Recent Advances in Global Optimization, Princeton University Press, 259-273. 



324 P H A N  T H I E N  T H A C H  

10. Muu, L. D., (1985), A convergent algorithm for solving linear programs with an additional 
reverse convex constraint, Kybernetika (Praha) 21, 428-435. 

11. Oettli, W. (1981), Optimality condition involving generalized convex mappings, Generalized 
Concavity in Optimization and Economics, ed. by S. Schaible and W. T. Ziemba, Academic Press, 
227-238. 

12. Oettli, W. (1982), Optimality condition for programming problems involving multivalued map- 
ping, Modern Applied Mathematics, ed. by B. Korte, North-Holland Publishing Company, 
196-226. 

13. Pardalos, P. M. and Rosen, J. B. (1987), Constrained global optimization: algorithms and 
applications, Lecture Notes in Computer Science, Springer-Verlag, 268. 

14. Pshenichnyyi, B. N. (1971), Lecons sur jeux differentials, controle optimal et jeux differentiels, 
Cahiers de IIRIA, no. 4. 

15. Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press; Princeton, NJ. 
16. Rosen, J. B. and Pardalos, P. M. (1986), Global minimization of large-scale constrained concave 

quadratic problems by separable programming, Math. Prog. 34, 163-174. 
17. Singer, I. (1980), Minimization of continuous convex functionals on complements of convex sets 

of locally convex spaces, Optimization U, 221-234. 
18. Thach, P. T. (1991a), Quasiconjugates of functions, duality relationship between quasiconvex 

minimization under a reverse convex constraint and quasiconvex maximization under a convex 
constraint, and applications, J. Math. Anal. Appl. 159, 299-322. 

19.Thach, P. T., Burkard, R., and Oettli, W. (1991), Mathematical programs with a two-dimensional 
reverse convex constraint, J. Global Optimization 1, 145-154. 

20. Thach, P. T. and Tuy, H. (1990), Dual Outer Approximation Methods for Concave Programs and 
Reverse Convex Programs, IHSS 90-30, Institute of Human and Social Sciences, Tokyo Institute 
of Technology. 

21. Thach, P. T. (1991b), Global optimality criterions and a duality with a zero gap in nonconvex 
optimization problems, Preprint, Department of Mathematics, Trier University. 

22. Thach, P. T. and Konno, H. (1992), A Generalized Dantzig-Wolfe Decomposition Principle for a 
Class of Nonconvex Programming Problems, IHSS 92-47, Institute of Human and Social Sciences, 
Tokyo Institute of Technology. 

23. Thoai, N. V. and Tuy, H. (1980), Convergent algorithms for minimizing a concave function, 
Math. Oper. Res. 5, 556-566. 

24. Tind, J. and Wolsey, L. A. (1981), An elementary survey of general duality theory in mathemati- 
cal programming, Math. Prog. 21, 241-261. 

25. Toland, J. F. (1978), Duality in nonconvex optimization, J. Math. Anal. Appl. 66, 399-415. 
26. Tuy, H. (1964), Concave programming under linear constraints, Doklady Akademia Nauka SSSR 

159, 32-35. 
27. Tuy, H. (1987), Convex programs with an additional reverse convex constraint, J. Optim. Theory 

and Appl. 52, 463-486. 
28. Tuy, H. (1987), A general deterministic approach to global optimization via d.c. programming, 

Mathematics Studies 129, 273-303. 
29. Tuy, H. (1991), Polyhedral annexation, dualization and dimension reduction technique in global 

optimization, J. Global Optimization 1, 229-244. 


